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INTRODUCTION

Hi! It looks like you’re interested in learning Calculus. I like you already.
This book isn’t a collection of practice problems or formal theories. Hundreds

of textbooks handle that quite well; this is the guide I wish they tucked into
their front cover.

The goal is to help you:

• Grasp the essence of Calculus in hours, not months

• Develop lasting, practical insights you can apply to your own life

• Enjoy a subject often considered humorless

• Solve an end-to-end problem on your own

• Build an intuitive foundation for classroom study

Most Calculus courses force you to build the car before driving it. Shouldn’t
you master the physics of acceleration and the chemistry of gasoline before
touching the wheel? (Sure, if you want to kill someone’s interest in cars.)

I’m here to yank you from class, put you in a go-kart, and let you ride
around Calculus Town. Yes, you’ll take control of the wheel (try to avoid
the pedestrians). Yes, you’ll make a few mistakes without perfect knowledge
of the internals. But you’ll be having fun. True understanding comes from
experiencing ideas yourself, not having them lectured to you.

After some practice, you may ignite the curiosity to explore the details
regular textbooks offer. (How can I go faster? Handle corners better? Which fuel
works best?)

A few minutes into Chapter 1, and you’ll visualize what Calculus does. After
an hour, you’ll analyze concepts using the Calculus lingo and mindset. A few
days later, after internalizing the ideas, you’ll begin solving famous problems on
your own.

So, how do we approach a notoriously difficult subject? Intuition-first.

Learning Strategy: Blurry To Sharp

What’s a better learning strategy: covering a subject in full detail from top-to-
bottom, or progressively sharpening a quick overview?
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INTRODUCTION ii

After a single class, which strategy gives you a better understanding of the
material? Which helps you predict how later parts fit together? Which is more
fun?

The linear, official, approach doesn’t work for me. Starting with a rough
outline and gradually improving it keeps our interest and helps us see how the
individual details are connected.

Most textbooks take the top-down approach, while this book is a blurry-to-
sharp guide. The fine details are out there when you need them.

Learning Strategy: Appreciation To Performance

Next question: Do you need to be a musician to enjoy a song? No way.
There are several levels of music understanding:

• Intuitive Appreciation: Just enjoying the music.

• Natural Description: Humming a tune you heard or made up.

• Symbolic Description: Reading and writing the sheet music.

• Theory: Explaining how harmonies work, why minor scales are somber,
etc.

• Performance: Playing the official instruments.

Math knowledge is the same. Start by appreciating, even enjoying, the idea.
Describe it with your own words, in English. Then, learn the official symbols to
make communication easier (“2 + 3 = 5” is better than “Two plus three equals
five”, right?).
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When we’re ready, we “perform” math by doing the calculations ourselves,
and diving into the detailed theory. But only if you want! Decide for yourself
what level of understanding you’d like to reach.

Here’s a guide to the book, depending on the level you’d like to reach:

• Intuitive Appreciation (Chapters 1-3)

• Technical Description (Chapters 4-5)

• Theory I (Chapters 6-8)

• Theory II (Chapters 9-14)

• Performance (Chapter 15)

The appendix includes a study plan if you wish to follow a formal course.

Learning Strategy: Study History

Calculus began when Archimedes realized shapes could be split into parts
and rearranged. After a lifetime of effort, he discovered connections between
spheres, circles and other shapes that were later etched onto his tomb.

Unfortunately, Calculus courses are taught out of order. The difficult, modern
concepts are taught first (limits, developed 1800s) and the intuitive foundations
are saved for the end (integrals, imagined 250 B.C.).

This book takes Archimedes’ approach: learn to see what Calculus can do,
then layer in the theory as needed. By then, your interest has been piqued and
you can read a modern textbook for the details (see recommendations in the
final chapter).

Please don’t feel obligated to reach the Performance level of Calculus. For
most of us (myself included), Appreciation and Description give practical, day-
to-day insights. The first few chapters of this course are all that’s needed to
have a better intuition than I had despite dozens of engineering classes.

Sound good? Let’s dive in.

Email Updates

BetterExplained.com provides high-quality, intuitive explanations to millions of
readers each year. If you’d like updates on Calculus and related topics, sign up
at:

http://betterexplained.com/newsletter

Book Webpage

Nobody likes typing URLs by hand. For clickable links for to the URLs in this
book, notes, and other resources, visit:

http://betterexplained.com/calculus/book

http://betterexplained.com/newsletter
http://betterexplained.com/calculus/book
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1 MINUTE CALCULUS: X-RAY AND

TIME-LAPSE VISION

We usually take shapes, formulas, and situations at face value. Calculus gives
us two superpowers to dig deeper:

• X-Ray Vision: You see the hidden pieces inside a pattern. You don’t just
see the tree, you know it’s made of rings, with another growing as we
speak.

• Time-Lapse Vision: You see the future path of an object laid out before
you (cool, right?). “Hey, there’s the moon. For the next few days it’ll be
white, but on the sixth it’ll be low in the sky, in a color I like. I’ll take a
photo then.”

1



CHAPTER 1. 1 MINUTE CALCULUS: X-RAY AND TIME-LAPSE VISION 2

So how is Calculus useful? Well, just imagine having X-Ray or Time-Lapse
vision to use at will. For an object or scenario we care about, how was it put
together? What will happen to it down the line?

(Strangely, my letters to Marvel about Calculus-man have been ignored to
date.)

1.1 Calculus In 10 Minutes: See Patterns Step-By-Step

What do X-Ray and Time-Lapse vision have in common? They examine patterns
step-by-step. An X-Ray shows the individual slices inside, and a Time-Lapse puts
each future state next to the other.

This seems pretty abstract. Let’s look at the equations for circumference,
area, surface area, and volume:

We have a vague feeling these formulas are connected, right?
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Let’s turn on our X-Ray vision and see where this leads. Suppose we know
circumference= 2πr and we want to figure out the equation for area. What can
we do?

This is a tough question. Squares are easy to measure, but how do we work
out the size of an ever-curving shape?

Calculus to the rescue. Let’s use our X-Ray vision to realize a disc is really
just a bunch of rings put together. Similar to a tree trunk, here’s a “step-by-step”
view of a circle’s area:

How does this viewpoint help? Well, let’s unroll those curled-up rings into
straight lines, so they’re easier to measure:
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Whoa! We have a bunch of straightened-out rings that form a triangle, which
is much easier to measure. (Wikipedia has an animation1.)

The height of each ring depends on its original distance from the center; the
ring 3 inches from the center would have a height of 2π ·3 inches. The smallest
ring is a pinpoint, more or less, without any height at all. The height of the
largest ring is the full circumference (2πr ).

And because triangles are easier to measure than circles, finding the area isn’t
too much trouble. The area of the “ring triangle” = 1

2 base·height= 1
2 r (2πr ) =πr 2,

which is the formula for a circle’s area!
Our X-Ray vision revealed a simple, easy-to-measure structure within a curvy

shape. We realized a circle and a set of glued-together rings were really the
same. From another perspective, a filled-in disc is really just the “time lapse” of
a single ring that grew larger.

1.2 So. . . What Can I Do With Calculus?

Remember learning arithmetic? You learned how to count out a number,
and how to combine it with others (add/subtract, multiply/divide, take expo-
nents/roots). Technically, counting isn’t necessary, as our caveman ancestors
did “fine” (survived) without it.

But, having a specific notion of quantity makes navigating the world easier.
You don’t have a “big” and “small” pile of rocks: you have an exact count. You
know how many arrows can be given to each hunter, or whether the gathered
berries are enough for the tribe.

Even better, arithmetic gives us metaphors that go beyond strict calculations.
It has sharpened our descriptions of everything, letting us clarify everything
from spiciness levels and movie ratings (1 to 5) to our mood (1 to 10). Specific
measurements are a useful idea, and hard to give up once seen.

Calculus trains us in two new metaphors: splitting apart and gluing together.
A pattern can be separated into parts, and the parts can be progressively
combined into the full pattern.

Is this viewpoint necessary for survival? Nope. But it is interesting.
Numbers and equations describe what we have, but Calculus explains the

steps that got us there. Instead of just the cookie, we can see the recipe.
Sure, Calculus appears in science because a step-by-step blueprint is more

useful than being handed a final result. But in everyday scenarios, we have a
nice perspective to turn on: What steps got us here? Are there any pros or cons
to that approach? And based on these steps, where are we going next?

Let’s feel what a Calculus perspective is like.

1Visit http://betterexplained.com/calculus/book for clickable links to extra resources.

http://upload.wikimedia.org/wikipedia/commons/0/07/TriangleFromCircle.gif
http://betterexplained.com/calculus/book
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2
PRACTICING X-RAY AND TIME-LAPSE VISION

Calculus trains us to use X-Ray and Time-Lapse vision, such as re-arranging a
circle into the “ring triangle” we saw in the previous chapter. This makes finding
the area. . . well, if not exactly easy, much more manageable.

But we were a little presumptuous. Must every circle in the universe be made
from rings?

Heck no! We’re more creative than that. Here’s a few more ways we could
have X-Rayed the circle:

We could imagine a circle as a set of rings, pizza slices, or vertical boards.
Each blueprint is a different step-by-step strategy in action.

2.1 Ring-by-ring Analysis

Using your Time-Lapse vision, imagine how the ring-by-ring strategy accumu-
lates over time:

What’s interesting about a ring-by-ring progression?

5



CHAPTER 2. PRACTICING X-RAY AND TIME-LAPSE VISION 6

• Each intermediate stage is an entire “mini circle” on its own. i.e., when
we’re halfway done, we still have a circle, just one with half the regular
radius.

• Each step is an increasing amount of work. Just imagine plowing a circular
field and spreading the work over several days. On the first day, you start
at the center and don’t even move. The next, you make take the tightest
turn you can. Then you start doing laps, larger and larger, until you are
circling the entire yard on the last day.

• The work is reasonably predictable, which may help planning. If we know
it’s an extra minute for each lap, then the 20th ring will take 20 minutes.

• Most of the work happens in the final laps. In the first 25% of the
timelapse, we’ve barely grown: we’re adding tiny rings. Near the end, we
start to pick up steam by adding long rings, each nearly the final size.

Now let’s get practical: why do trees follow a ring pattern?
A big tree must grow from a complete smaller tree. With the ring-by-ring

strategy, we’re always building on a complete, fully-formed circle. We aren’t
trying to grow the “left half” of the tree and then work on the right side.

In fact, many natural processes that grow (trees, bones, bubbles, etc.) take
this inside-out approach.

2.2 Slice-by-slice Analysis

Now think about a slice-by-slice progression. What do you notice?

• We contribute the same amount with each step. Even better, the parts
are identical. This may not matter for math, but in the real world (e.g.,
cutting a cake), we want to use the same motion when cutting each slice.

• Because the slices are symmetrical, we can use shortcuts like making cuts
across the entire shape. These “assembly line” speedups work well when
generating identical components.

• Progress is extremely easy to measure. If we have 10 slices, then at slice 6
we are exactly 60% done (by both area and circumference).

• We follow a sweeping circular path, never retracing our steps from an
“angular” point of view. When carving out the rings, each step involved
the full 360 degrees.
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Let’s think about the real world: what objects use the slice-by-slice pattern,
and why?

Well food, for one. Cake, pizza, pie: we want everyone to have an equal
share. Slices are simple to cut, we get nice speedups (cutting across the cake),
and it’s easy to see how much is remaining. Imagine cutting circular rings from
a pie and estimating how much is left.

Now think about radar scanners: they sweep a beam in a circle, “clearing”
a slice of sky before moving to another angle. This strategy does leave a blind
spot in the angle you haven’t yet covered, a tradeoff you’re hopefully aware of.

Contrast this to sonar used by a submarine or bat, which sends a sound
“ring” propagating in every direction. That works best for close targets (covering
every direction at once). The drawback is that unfocused propagation gets
much weaker the further out you go, as the initial energy is spread out over a
larger ring. We use megaphones and antennas to focus our signals into beams
(thin slices) to get the most range for our energy.

Logistically, if we’re building a circular shape from a set of slices (like the
folded sections of a paper fan), it helps to have every part be identical. Figure
out the best way to make a single slice, then mass produce them. Even better:
if one part can collapse, the entire shape can fold up!

2.3 Board-by-board Analysis

Getting the hang of X-Rays and Time-lapses? Great. Look at the progression
above, and spend a few seconds thinking of the pros and cons. Don’t worry, I’ll
wait.

Ready? Ok. Here’s a few of my observations:

• This is a very robotic pattern, with boards neatly arranged left-to-right.

• The contribution from each step starts small, gradually gets larger, maxes
out in the middle, and begins shrinking again.

• Our progress is somewhat unpredictable. Sure, at the halfway mark we’ve
finished half the circle, but the pattern rises and falls which makes it
difficult to analyze. By contrast, the ring-by-ring pattern changed the
same amount each time, always increasing. It was clear that the later
rings would add the most work. Here, it’s the middle section which seems
to be doing the heavy lifting.

Ok, time to figure out where this pattern shows up in the real world.
Decks and wooden structures, for one. When putting down wooden planks,

we don’t want to retrace our steps (especially if there are other steps involved,
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like painting). Just like a tree needs a fully-formed circle at each step, a deck
insists upon using the linear boards we can find at Home Depot.

In fact, any process with a strict “pipeline” might use this approach: finish
a section and move onto the next. Think about a printer that has to spray a
pattern as the paper is fed through (or these days, a 3d printer). The printer
sees a position only once, so it better make it count!

The circle doesn’t need to be a literal shape. It could represent a goal you’re
trying to accomplish, whether an exercise plan or topics to cover in a counseling
session.

The board approach suggests you start small, work your way up, then ease
back down. The pizza-slice approach could be tolerable (identical progress
every day), but rings could be demoralizing: every step requires more effort
than the one before.

2.4 Getting Organized

So far, we’ve been using natural descriptions to explain our thoughts: “Take
a bunch of rings” or “Cut the circle into pizza slices”. This conveys a general
notion, but it’s a bit like describing a song with “Dum-de-dum-dum” – you’re
probably the only one who knows what you mean. But a little organization can
make your intent perfectly clear.

To start, we can explain how we’re splitting the shape into steps. I like to
imagine a little arrow in the direction we move as we cut out each piece:

In my head, I’m moving along the yellow line, calling out the steps as we go
(step forward, make a ring, step forward, make a ring. . . ).

And while the arrow shows how the rings are made, the steps are hard to
visualize because they’re jammed inside the circle. As we saw in the first lesson,
we can pull out the individual steps and line them up:

We draw a black arrow to show the trend in the size of each step. Pretty
nice, right? We can tell, at a glance, that the rings are increasing, and by the
same amount each time (the trend line is straight, like a set of stairs).
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Math fans and neurotics both enjoying lining up the pieces. There is some-
thing soothing about it, I suppose: who doesn’t want to line up all the pencils
that are scattered on the floor?

And since we’re on the topic, we might as well organize the other patterns
too:

Ah! Now it’s much easier to compare each X-Ray strategy:

• With circular rings, steps increase steadily (upward sloping line)

• With triangular slices, steps stay the same size (flat, horizontal line)

• With rectangular boards, steps get larger, peak, then get smaller (up and
down). The trend line looks elongated because the boards have been
pushed down to line up at the bottom.

These charts make the strategy comparisons easier, wouldn’t you say? Sure.
But wait, isn’t that trendline looking like a dreaded x-y graph?

Yep. Unfortunately, many classes simply present the black trend line, without
showing you the pieces it represents. That’s a recipe for pain: be explicit about
what the graph means!

The black trend line is the super-summarized description of an X-Ray strategy.
We’re showing the size of each piece (the graph height) and how their size is
changing (trend direction).

The distinction between a ring, slice and board isn’t important: in Calculus,
they’re all pieces of the whole pattern. Words like “slice”, “ring” or “board”, are
just descriptive versions of “piece of the whole”, and are otherwise interchange-
able.
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In this guide we’ll keep graphs to the level seen above: trend lines, with the
individual pieces shown. This is a foundation for later, performance-based
classes where you may work with graphs directly. But just for reference,
Archimedes laid the foundations of Calculus without x-y graphs, and found his
results without them.

2.5 Questions

Are things starting to click a bit? Thinking better with X-Rays and Time-lapses?

1. Can you describe a grandma-friendly version of what you’ve learned?

2. Let’s expand our thinking into the 3rd dimension. Can you think of a few
ways to build a sphere? (No formulas, plain-English descriptions are fine.)

PS. It may bother you that our steps create a “circle-like” shape, but not a
real, smooth circle. Great question, and we’ll get to that. But to be fair, it must
also bother you that the square pixels on a computer screen make “letter-like”
patterns, but not real, smooth letters. And somehow, the “letter-like patterns”
convey the same information as real letters!
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EXPANDING OUR INTUITION

I hope you thought about the question from last time: how do we take our
X-Ray strategies into the 3rd dimension?

Here’s my take:

• Rings become shells, a thick candy coating on a delicious gobstopper. Each
layer is slightly bigger than the one before.

• Slices become wedges, identical sections like slices of an orange.

• Boards become plates, thick discs which can be stacked together. (I some-
times daydream of opening a bed & breakfast that only serves spherical
stacks of pancakes.)

The 3d segments can be seen as being made from their 2d counterparts. For
example, we can spin an individual ring like a coin to create a shell. A wedge
looks like a bunch of pizza slices (of different sizes) stacked on top of each other.

11
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Lastly, we can imagine spinning a board to make a plate, like carving a wooden
sphere with a lathe (video).

The tradeoffs in 3d are similar to the 2d versions:

• Organic processes grow in shell-by-shell layers (pearls in an oyster).

• Fair divisions require wedges (cutting an apple for friends).

• The robotic plate approach seems easy to manufacture (weightlifting
plates).

An orange is an interesting hybrid: from the outside, it appears to be made
from shells, growing over time. But on the inside, it forms a symmetric internal
structure with wedges – good for evenly distributing seeds, right? We could
analyze it both ways.

3.1 Exploring The 3d Perspective

In the first lesson we had the vague notion that the circle/sphere formulas were
related:

With our X-Ray and Time-Lapse skills, we have a specific idea for how:

http://www.youtube.com/watch?v=-3uqYYkvP0Q
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• Circumference: Start with a single ring.

• Area: Make a filled-in disc with a ring-by-ring time lapse.

• Volume: Make the circle into a plate, and do a plate-by-plate time lapse
to build a sphere.

• Surface area: X-Ray the sphere into a bunch of shells; the outer shell is
the surface area.

Wow! We now have detailed descriptions of how one formula is related to
the other. We know, intuitively, how to morph shapes into alternate versions
by thinking “Time-Lapse this” or “X-Ray that”. We could even work backwards:
starting with a sphere, we can X-Ray it into plates, and then take one plate and
X-Ray it into rings.

3.2 The Need For Math Notation

You might have noticed it’s getting harder to describe your ideas. We’re reaching
for physical analogies (rings, boards, wedges) to explain our plans: “Ok, take
that circular area, and try to make some discs out of it. Yeah, like that. Now
line those discs up into the shape of a sphere. . . ”.

I love diagrams and analogies, but should they be required to explain an
idea? Probably not.

Take a look at how numbers developed. At first, we used very literal symbols
for counting: I, II, III, and so on. Eventually, we realized a symbol like V could
take the place of IIIII, and even better, every digit can have its own symbol.
(The number “1” reminds us of our line-based history.)

Math notation helped in a few ways:

• Symbols are shorter than words. Isn’t “2 + 3 = 5” better than “two
added to three is equal to five”? Fun fact: In 1557, Robert Recorde
invented the equals sign, written with two parallel lines (=), because “noe
2 thynges, can be moare equalle”. (I agrye!)

• The rules do the work for us. With Roman numerals, we’re essentially
recreating numbers by hand (why should VIII take so much effort to write
compared to I? Just because 8 is larger than 1? Not a good reason!). Deci-
mals help us “do the work” of expressing numbers, and make them easy
to manipulate. So far, we’ve been doing the work of calculus ourselves:
cutting a circle into rings, realizing we can unroll them, looking up the
equation for area and measuring the resulting triangle. Couldn’t the rules
help us here? You bet. We just need to figure them out.

• We generalized our thinking. “2 + 3 = 5” is really “twoness + threeness
= fiveness”. It sounds weird, but we have an abstract quantity (not people,
or money, or cows. . . just “twoness”) and we see how it’s related to other
quantities. The rules of arithmetic are general-purpose, and it’s our job to
apply them to a specific scenario.
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This last point is important. When learning addition, your teacher may have
used literal apples to show that two plus three was five. With enough practice,
you started using abstract symbols without needing a physical example, and “2
+ 3 = 5” made sense.

Calculus is similar: it works on abstract equations like f (x) = x2, but physical
examples are a nice starting point. When we see a shape like this:

we can actually see what Calculus does as we apply a technique, instead
of pushing symbols around. Eventually, we can convert the shape into its
corresponding equation and work with symbols directly.

So, don’t think Calculus requires a real-world object, any more than addition
requires apples. It can analyze any shape or formula (a physics equation,
business scenario, graph of a function) – shapes are just easier to start with.
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LEARNING THE OFFICIAL TERMS

We’ve been able to describe our thinking process with analogies (X-Rays, Time-
Lapses) and diagrams:

However, this is a very elaborate way to communicate. Here’s the Official
Math® terms that describe our intuitive concepts:

Let’s walk through the fancy names.

15
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4.1 The Derivative

The derivative is the pattern of slices we get as we X-Ray a shape. It’s indicated
by the black trend line, which might be flat, rising constantly, rising and falling,
etc. Now here’s the trick: although the derivative generates the entire sequence
of slices, we can also extract a single slice.

Think about a function like f (x) = x2. It describes every possible squared
value (1, 4, 9, 16, 25, etc.), and we can graph them all on a chart. But, we can
also ask for the value of f (x) at a specific value, such as at x = 3.

The derivative is similar. Officially, it’s the complete pattern of slices we get
after X-Raying a shape. However, we can pull out an individual slice by asking
for the derivative at a certain value. (The derivative is a function, just like
f (x) = x2, and mathematicians assume you’re talking about the entire function
unless you ask for a specific slice.)

So, what do we need to find the derivative? Just the shape to split apart,
and the path to follow as we cut it up (the orange arrow). The terminology is
“derive <some pattern> with respect to <some direction>”. For example:

• The derivative of a circle with respect to the radius creates rings (which
always increase)

• The derivative of a circle with respect to the perimeter creates slices (which
are equal-sized)

• The derivative of a circle with respect to the x-axis creates boards (which
get larger, peak, and get smaller)

I agree that “with respect to” sounds formal: Honorable Grand Poombah
radius, it is with respect to you that we derive. Math is a gentleman’s game, I
suppose.

Taking the derivative is also called “differentiating”, because we are finding
the difference between successive positions as a shape grows. As we grow the
radius of a circle, the outer ring is the difference between the size of the current
disc and the next size up.

4.2 The Integral, Arrows, and Slices

The integral is gluing together (Time-Lapsing) a bunch of slices and measuring
the final result. For example, we glued together the rings (into a “ring triangle”)
and saw it accumulated to πr 2, aka the area of a circle.

Here’s what we need to find the integral:

• Which direction are we gluing the steps together? Along the orange
line (the radius, in this case)

• When do we start and stop? At the start and end of the arrow (we start
at 0, no radius, and move to r, the full radius)

• How big is each step? Well. . . each item is a “ring”. Isn’t that enough?
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Nope! We need to be specific. We’ve been saying we cut a circle into “rings”
or “pizza slices” or “boards”. But that’s not specific enough; it’s like a BBQ recipe
that says “Cook meat. Flavor to taste.”

Maybe an expert knows what to do, but we need more specifics. How large,
exactly, is each step (technically called the “integrand”)?

Ah. A few notes about the variables:

• If we are moving along the radius r , then dr is the little chunk of radius
in the current step

• The height of the ring is the circumference, or 2πr

There’s several gotchas to keep in mind.
First, dr is its own variable, and not “d times r”. It represents the tiny section

of the radius present in the current step. This symbol (dr , d x, etc.) is often
separated from the integrand by just a space, and it’s assumed to be multiplied
(written 2πr dr ).

Next, if r is the only variable used in the integral, then dr is assumed to be
there. So if you see

∫
2πr this still implies we’re doing the full

∫
2πr dr . (Again,

if there are two variables involved, like radius and perimeter, you need to clarify
which step we’re using: dr or d p?)

Last, remember that r (the radius) changes as we Time-Lapse, starting at 0
and eventually reaching its final value. When we see r in the context of a step, it
means “the size of the radius at the current step” and not the final value it may
ultimately have.

These issues are extremely confusing. I’d prefer we use rdr for “r at the
current step” instead of a general-purpose r that’s easily confused with the max
value of the radius. We can’t change the symbols at this point, unfortunately.

4.3 Practicing The Lingo

Let’s learn to speak like calculus natives. Here’s how we can describe our X-Ray
strategies:
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Remember, the derivative just splits the shape into (hopefully) easy-to-
measure steps, such as rings of size 2πr dr . We broke apart our lego set and
have pieces scattered on the floor. We still need an integral to glue the parts
together and measure the new size. The two commands are a tag team:

• The derivative says: “Ok, I split the shape apart for you. It looks like a
bunch of pieces 2πr tall and dr wide.”

• The integral says: “Oh, those pieces resemble a triangle – I can measure
that! The total area of that triangle is 1

2 base ·height, which works out to
πr 2 in this case.”

Here’s how we’d write the integrals to measure the steps we’ve made:
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A few notes:

• Often, we write an integrand as an unspecified “pizza slice” or “board”
(use a formal-sounding name like s(p) or b(x) if you like). First, we setup
the integral, and then we worry about the exact formula for a board or
slice.

• Because each integral represents slices from our original circle, we know
they will be the same. Gluing any set of slices should always return the
total area, right?

• The integral is often described as “the area under the curve”. It’s accurate,
but shortsighted. Yes, we are gluing together the rectangular slices under
the curve. But this completely overlooks the preceding X-Ray and Time-
Lapse thinking. Why are we dealing with a set of slices vs. a curve in the
first place? Most likely, because those slices are easier than analyzing the
shape itself (how do you “directly” measure a circle?).

4.4 Questions

At a high level, can you find another activity made easier with symbols, instead
of using full English sentences? Would practitioners ever go back to written
descriptions?

Math is just like that. Let’s try a few phrases, even if we aren’t fluent yet.
Question 1: Can you describe the integrals below in “Math English”?
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Assume the arrow spans half the radius. The description should follow the
format:

integrate [size of step] from [start] to [end] with respect to [path
variable]

Have an idea? Here’s the answer for the first integral1 and the second
integral2. These links go to Wolfram Alpha, an online math solver, which we’ll
learn to use.

Question 2: Can you find the “Math English” way to describe our pizza-slice
idea?

The math description should be something like this:
integrate [size of step] from [start] to [end] with respect to [path

variable]
Remember that each slice is basically a triangle (so what’s the area?). The

slices move around the perimeter (where does it start and stop?). Have a guess
for the command? Here it is, the slice-by-slice description3.

Question 3: Can you describe how to move from volume to surface area?

1integrate 2 * pi * r * dr from r=0 to r=0.5r
2integrate 2 * pi * r * dr from r=0.5 to r=r
3integrate 1/2 * r * dp from p=0 to p=2*pi*r

http://www.wolframalpha.com/input/?i=integrate+2+*+pi+*+r+*+dr+from+r%3D0+to+r%3D0.5r
http://www.wolframalpha.com/input/?i=integrate+2+*+pi+*+r+*+dr+from+r%3D0.5r+to+r%3Dr
http://www.wolframalpha.com/input/?i=integrate+2+*+pi+*+r+*+dr+from+r%3D0.5r+to+r%3Dr
http://www.wolframalpha.com/input/?i=integrate+1%2F2+*+r+*+dp+from+p%3D0+to+p%3D2*pi*r
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Assume we know the volume of a sphere is 4/3 * pi * r^3. Think about
the instructions to separate that volume into a sequence of shells. Which
variable are we moving through?

derive [equation] with respect to [path variable]
Have a guess? Great. Here’s the command to turn volume into surface area4.

4derive 4/3 pi * r^3 with respect to r

http://www.wolframalpha.com/input/?i=derive+4%2F3+pi+*+r%5E3+with+respect+to+r


C
H

A
P

T
E

R

5
MUSIC FROM THE MACHINE

In the previous lessons we’ve gradually sharpened our intuition:

• Appreciation: I think it’s possible to split up a circle to measure its area

• Natural Description: Split the circle into rings from the center outwards,
like so:

• Formal Description: integrate 2 * pi * r * dr from r=0 to r=r

• Performance: (Sigh) I guess I’ll have to start measuring the area. . .

Wait! Our formal description is precise enough that a computer can do the
work for us:

22

http://www.wolframalpha.com/input/?i=integrate+2+*+pi+*+r+*+dr+from+r%3D0+to+r%3Dr
http://www.wolframalpha.com/input/?i=integrate+2+*+pi+*+r+*+dr+from+r%3D0+to+r%3Dr
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Whoa! We described our thoughts well enough that a computer did the
legwork.

We didn’t need to manually unroll the rings, draw the triangle, and find
the area (which isn’t overly tough in this case, but could have been). We saw
what the steps would be, wrote them down, and fed them to a computer:
boomshakalaka, we have the result. (Just worry about the “definite integral”
portion for now.)

Now, how about derivatives, X-Raying a pattern into steps? Well, we can ask
for that too:

Similar to above, the computer X-Rayed the formula for area and split it
step-by-step as it moved. The result is 2πr , the height of the ring at every
position.

5.1 Seeing The Language In Action

Wolfram Alpha is an easy-to-use tool: the general format for calculus questions
is

• integrate [equation] from [variable=start] to [variable=end]

• derive [equation] with respect to [variable]

That’s a little wordy. These shortcuts are closer to the math symbols:

• \int [equation] dr - integrate equation (by default, assume we go from
r = 0 to r = r , the max value)

• d/dr equation - derive equation with respect to r

• There’s shortcuts for exponents (3^2 = 9), multiplication (3 * r), and
roots (sqrt(9) = 3)

Now that we have the machine handy, let’s try a few of the results we’ve
seen so far:
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Click the formal description to see the computer crunch the numbers. As
you might have expected, they all result in the familiar equation for area. A few
notes:

• The size of the wedge is 1
2 base ·height. The base is d p (the tiny section of

perimeter) and the height is r , the distance from the perimeter back to
the center.

• The size of the board is tricky. In terms of x & y coordinates, we have
x2 + y2 = r 2, by the Pythagorean Theorem:

We solve for the height to get y =
p

r 2 −x2. We actually need 2 copies of
height, because y is the positive distance above the axis, and the board extends
above and below. The boards are harder to work with, and it’s not just you:
Wolfram Alpha takes longer to compute this integral than the others!

The approach so far has been to immerse you in calculus thinking, and
gradually introduce the notation. Some of it may be a whirl – which is com-
pletely expected. You’re sitting at a cafe, overhearing conversation in a foreign
language.

Now that you have the sound in your head, we’ll begin to explore the details
piece-by-piece.
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6
IMPROVING ARITHMETIC AND ALGEBRA

We’ve intuitively seen how calculus dissects problems with a step-by-step view-
point. Now that we have the official symbols, let’s see how to bring arithmetic
and algebra to the next level.

6.1 Better Multiplication And Division

Multiplication makes addition easier. Instead of grinding through questions like
2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2, we can rewrite it as: 2
× 13.

Boomshakalaka. If you wanted 13 copies of a number, just write it like that!
Multiplication makes repeated addition easier. But there’s a big limitation:

we must use identical, average-sized pieces.

• What’s 2 × 13? It’s 13 copies of the same element.

• What’s 100 / 5? It’s 100 split into 5 equal parts.

Identical parts are fine for textbook scenarios, where you drive an unwaver-
ing 30mph for exactly 3 hours. The real world isn’t so smooth. Calculus lets us
accumulate or separate shapes according to their actual, not average, amount:

• The derivative is a better type of division that splits a shape along a
path (into possibly different-sized slices)

• The integral is a better type of multiplication that accumulates a se-
quence of steps (which could be different sizes)

Operation Example Notes

Division
y

x
Split whole into identical parts

Differentiation
d

d x
y Split whole into (possibly different) parts

Multiplication y · x Accumulate identical steps

Integration
∫

y d x Accumulate (possibly different) steps

25
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Let’s analyze our circle-to-ring example again. How does arithmetic/algebra
compare to calculus?

Division spits back the averaged-sized ring in our pattern. The derivative
gives a formula (2πr ) that describes every ring (just plug in r). Similarly,
multiplication lets us scale up the average element (once we’ve found it) into
the full amount. Integrals let us add up the pattern directly.

Sometimes we want to use the average item, not the fancy calculus steps,
because it’s a simpler representation of the whole (“What’s the average trans-
action size? I don’t need the full list.”). That’s fine, as long as it’s a conscious
choice.

6.2 Better Formulas

If calculus provides better, more-specific version of multiplication and division,
shouldn’t we rewrite formulas with it? You bet.
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Algebra Calculus

distance= speed · time distance= ∫
speed d t

speed= distance
time

speed= d

d t
distance

area= height ·width area= ∫
height d w

weight= density · length ·width ·height weight=Ð
density d x d y d z

An equation like distance = speed · time explains how to find total distance
assuming an average speed. An equation like distance= ∫

speed d t tells us how
to find total distance by breaking time into instants (split along the “t” axis), and
accumulating the (potentially unique) distance traveled each instant (speed ·d t).

Similarly, speed = d
d t distance explains that we can split our trajectory into

time segments, and the (potentially unique) amount we moved in that time
slice was the speed.

The overused “integrals are area under the curve” explanation becomes
more clear. Multiplication, because it deals with static quantities, can only
measure the area of rectangles. Integrals let measurements curve and undulate
as we go: we’ll add their contribution, regardless.

A series of multiplications becomes a series of integrals (called a triple
integral). It’s beyond this primer, but your suspicion was correct: we can mimic
the multiplications and integrate several times in a row.

Math, and specifically calculus, is the language of science because it describes
relationships extremely well. When I see a formula with an integral or derivative,
I mentally convert it to multiplication or division (remembering we can handle
differently-sized elements).

6.3 Better Algebra

Algebra lets us start with one fact and systematically work out others. Imagine I
want to know the area of an unknown square. I can’t measure the area, but I
overhead someone saying it was 13.3 inches on a side.

Algebra Thinking Process

Area of square=? The area of this square is unknown. . .
p

Area= 13.3 . . . but I know the square root.(p
Area

)2 = (13.3)2 Square both sides. . .

Area= 176.89 . . . and I can recreate the original area

Remember learning that along with add/subtract/multiply/divide, we could
take powers and roots? We added two new ways to transform an equation.
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Well, calculus extends algebra with two more operations: integrals and
derivatives. Now we can work out the area of a circle, algebra-style:

Algebra + Calculus Thinking Process

Area of circle=? The area of a circle is unknown. . .

d

dr
Area= 2πr . . . but I know it splits into rings (along the radius)

∫ d

dr
Area= ∫

2πr Integrate both sides. . .

Area=πr 2 . . . and I can recreate the original area

The abbreviated notation helps see the big picture. If the integrand only
uses a single variable (as in 2πr ), we can assume we’re using dr from r = 0 to
r = r . This helps us think of integrals and derivatives like squares and square
roots: operations that cancel!

It’s pretty neat: “gluing together” and “splitting apart” should behave like
opposites, right?

With our simpler notation, we can write
∫ d

dr Area=Area instead of the bulky∫ r
0

(
d

dr Area
)

dr =Area.

6.4 Learning The Rules

With arithmetic, we learned special techniques for combining whole numbers,
decimals, fractions, and roots/powers. Even though 3+9 = 12, we can’t assumep

3+p
9 =p

12.
Similarly, we need to learn the rules for how integrals/derivatives work when

added, multiplied, and so on. Yes, there are fancy rules for special categories
(what to do with eˆx, natural log, sine, cosine, etc.), but I’m not concerned with
that. Let’s get extremely comfortable with the basics. The fancy stuff can wait.
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7
SEEING HOW LINES WORK

Let’s start by analyzing a fairly simple pattern, a line:

f (x) = 4x

In everyday terms, we enter an input, x, and get an output, f (x). Suppose
we’re buying fencing. For every foot we ask for (the input, x), it costs us $4 (the
output, f (x)). 3 feet of fence would cost $12. Fair enough.

Notice the abstract formula f (x) = 4x only considers numerical quantities,
but not their units (feet, dollars, etc.). We could write that a foot of fencing
costs 400 pennies ( f (x) = 400x) and it’s up to us to realize it’s the same scenario.
A big gotcha in Calculus is realizing x, d x and friends have sizes – but not units
– which we eventually interpret as area, volume, dollars, pennies, etc. In Math
Land, everything is a number.

7.1 Finding the Derivative Of A Line

The derivative of a pattern, d
d x f (x), is the sequence of slices we get as we

change an input variable (x is the natural choice here). How do we figure out
the sequence of steps?

Well, I imagine going to Home Depot and pestering the clerk:

You: I’d like some lumber please. What will it run me?

Clerk: How much do you want?

You: Um. . . 1 foot, I think.

Clerk: That’ll be $4. Anything else I can help you with?

You: Actually, it might be 2 feet.

Clerk: That’ll be $8. Anything else I can help you with?

You: It might be 3 feet.

Clerk: (sigh) That’ll be $12. Anything else I can help you with?

29
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You: How about 4 feet?

We have a relationship ( f (x) = 4x) and investigate it by changing the input
a tiny bit. We see if there’s a change in output (there is!), then we change the
input again, and so on.

In this case, it’s clear that an additional foot of fencing raises the cost by $4.
So we’ve just determined the derivative to be a constant 4, right?

Not so fast. Sure, we thought about the process and worked it out, but let’s
be a little more organized (not every pattern is so simple). Can we describe our
steps?

1. Get the current output, f (x). In our case, f (1) = 4.

2. Step forward by d x (1 foot, for example)

3. Find the new amount, f (x +d x). In our case, it’s f (1+1) = f (2) = 8.

4. Compute the difference: f (x +d x)− f (x), or 8 - 4 = 4

Ah! The difference between the next step and the current one is the size of
our slice. For f (x) = 4x we have:

f (x +d x)− f (x) = 4(x +d x)−4(x) = 4 ·d x

Increasing length by d x increases the cost by 4 ·d x.
That statement is true, but a little awkward: it talks about the total change.

Wouldn’t it be better to have a ratio, such as “cost per foot”?
We can extract the ratio with a few shortcuts:

• d x = change in our input

• d f = resulting change in our output, f (x +d x)− f (x)

• d f
d x = ratio of output change to input change

In our case, we have

d f

d x
= 4 ·d x

d x
= 4

Notice how we express the derivative as d f
d x instead of d

d x f (x). What gives?
It turns out there’s a few different versions we can use.

Think about the various ways we express multiplication:

• Times symbol: 3 × 4 (used in elementary school)

• Dot: 3 · 4 (used in middle school)

• Implied multiplication with parentheses: (x +4)(x +3)

• Implied multiplication with a space: 2πr dr
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The more subtle the symbol, the more we focus on the relationship be-
tween the quantities; the more visible the symbol, the more we focus on the
computation.

The notation for derivatives is similar:

Some versions, like f ′(x), remind us the sequence of steps is a variation
of the original pattern. Notation like d f

d x puts us into detail-oriented mode,
thinking about the ratio of output change relative to the input change (“What’s
the cost per additional foot?”).

Remember, the derivative is a complete description of all the steps, but it
can be evaluated at a certain point to find the step there: What is the additional
cost/foot when x = 3? In our case, the answer is 4.

Here’s what the computer returns for this problem:

Nice! As we suspected, the pattern f (x) = 4x changes by a constant 4 as we
increase x.

7.2 Finding The Integral Of A Constant

Now let’s work in the other direction: given the sequence of steps, can we find
the size of the original pattern?

In our fence-building scenario, it’s fairly straightforward. Solving

d f

d x
= 4
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means answering “What pattern has an output change of 4 times the input
change?”.

Well, we’ve just seen that f (x) = 4x results in f ′(x) = 4. So, if we’re given
f ′(x) = 4, we can guess the original function must have been f (x) = 4x.

I’m pretty sure we’re right (what else could the integral of 4 be?), but let’s
compare this with the computer:

Whoa – there’s two different answers (definite and indefinite). Why? Well,
there’s many functions that could increase cost by $4/foot! Here’s a few:

• Cost = $4 per foot, or f (x) = 4x

• Cost = $4 + $4 per foot, or f (x) = 4+4x

• Cost = $10 + $4 per foot, or f (x) = 10+4x

There could be a fixed per-order fee, with the fence cost added in. All the
equation f ′(x) = 4 says is that each additional foot of fencing is $4, but we don’t
know the starting conditions.

• The definite integral tracks the accumulation of a set amount of slices.
The range can be numbers, such as

∫ 13
0 4, which measures the slices from

x=0 to x=13 (13 · 4 = 52). If the range includes a variable (0 to x), then
the accumulation will be an equation (4x).

• The indefinite integral finds the actual formula that created the pattern
of steps, not just the accumulation in that range. It’s written with just an
integral sign:

∫
f (x). And as we’ve seen, the possibilities for the original

function should allow for a starting offset of C.

The notation for integrals can be fast-and-loose, and it’s confusing. Are we
looking for an accumulation, or the original function? Are we leaving out d x?
These details are often omitted, so it’s important to feel what’s happening.
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7.3 The Secret: We Can Work Backwards

The little secret of integrals is that we don’t need to solve them directly. Instead
of trying to glue slices together to find out their area, we just learn to recognize
the derivatives of functions we’ve already seen.

If we know the derivative of 4x is 4, then if someone asks for the integral
of 4, we can respond with “4x” (plus C, of course). It’s like memorizing the
squares of numbers, not the square roots. When someone asks for the square
root of 121, dig through and remember that 11 × 11 = 121.

An analogy: Imagine an antiques dealer who knows the original vase just
from seeing a pile of shards.

How does he do it? Well, he takes replicas in the back room, drops them,
and looks at the pattern of pieces. Then he comes to your pile and says “Oh, I
think this must be a Ming Dynasty Vase from the 3rd Emperor.”

He doesn’t try to glue your pile back together – he’s just seen that exact vase
break before, and your pile looks the same!

Now, there may be piles he’s never seen, that are difficult or impossible to
recognize. In that case, the best he can do is to just add up the pieces (with a
computer, most likely). He might determine the original vase weighed 13.78
pounds. That’s a data point, fine, but it’s not as nice as knowing what the vase
was before it shattered.

This insight was never really explained to me: it’s painful to add up (possibly
changing) steps directly, especially when the pattern gets complicated. So, just
learn to recognize the pattern from the derivatives we’ve already seen.

7.4 Getting To Better Multiplication

Gluing together equally-sized steps looks like regular multiplication, right? You
bet. If we wanted 3 steps (0 to 1, 1 to 2, 2 to 3) of size 2, we might write:∫ 3

0
2 d x = 6

Again, this is a fancy way of saying “Accumulate 3 steps of size 2: what do
you get in total?”. We are time-lapsing a sequence of equal changes.

Now, suppose someone asks you to add 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 +
2 + 2 + 2 + 2 + 2. You might say: Geez, can’t you write it more simply? You
know, something like: ∫ 13

0
2 d x = 26

7.5 Creating The Abstract Rules

Have an idea how linear functions behave? Great. We can make a few abstract
rules – like working out the rules of algebra for ourselves.

If we know our output is a scaled version of our input ( f (x) = ax), the
derivative (pattern of changes) is

http://en.wikipedia.org/wiki/Nonelementary_integral
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d

d x
a · x = a

and the integral (pattern of accumulation) is∫
a = ax +C

That is, the ratio of each output step to each input step is a constant a (4,
in our examples above). And now that we’ve broken the vase, we can work
backwards: if we accumulate steps of size a, they must have come from a
pattern similar to a · x (plus C, of course).

Notice how I wrote
∫

a and not
∫

a d x – I wanted to focus on a, and not
details like the width of the step (d x). Part of calculus is learning to expose the
right amount of detail.

One last note: if our output does not react at all to our input (we’ll charge
you a constant $2 no matter how much you buy. . . including nothing!) then
“steps” are a constant 0:

d

d x
a = 0

In other words, there is no difference in the before-and-after measurement.
Now, a pattern may have an occasional zero slice, if it stands still for a moment.
That’s fine. But if every slice were zero, it means our pattern never changes.

There are a few subtleties down the road, but let’s learn to say “Me want
food” before “Verily, I hunger”.
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8
PLAYING WITH SQUARES

We’ve seen how lines behave: they change the same amount with each step.
Now let’s try a more complex function like f (x) = x2. It’s a more detailed
scenario, so let’s visualize it.

Imagine you’re building a square garden, to plant veggies and enjoy cucum-
bers in a few months. You’re not sure how large to make it. Too small, and
there’s not enough food, but too large, and you’ll draw the attention of the
veggie mafia.

Your plan is to build the garden incrementally, foot-by-foot, until it looks
right. Let’s say you start from scratch and build up to a 10 × 10 plot:

To the untrained eye, you have single a 10 × 10 garden, which uses 40 feet
of perimeter fencing (10 × 4) and 100 square feet of topsoil (10 × 10). (Assume
topsoil is sold by the square foot, with a standard thickness.)

8.1 Bring On The Calculus

That’s it? The analysis just figures out the current perimeter and square footage?
No way.

By now, you should be clamoring to use X-Ray and Time-Lapse vision to see
what’s happening under the hood. Why settle for a static description when we
can know the step-by-step description too?

We can analyze the behavior of the perimeter pretty easily:

Perimeter= 4x

35
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d

d x
Perimeter= 4

The change in perimeter ( dP
d x ) is a constant 4. For every 1-foot increase in x,

we have a 4-foot jump in the perimeter.
We can visualize this process. As the square grows, we push out the existing

sides and add 4 corner pieces (in yellow):

The visual is helpful, but not required. After our exposure to how lines
behave, we can glance at an equation like p = 4x and realize that p jumps by 4
whenever x jumps by 1.

8.2 Changing Area

Now, how does area change? Since squares are fairly new, let’s X-Ray the shape
as it grows:

We can write out the size of each jump, like so:
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x x2 Jump to next square

0 0 1 (12 −02 = 1)

1 1 3 (22 −12 = 3)

2 4 5 (32 −22 = 5)

3 9 7

4 16 9

5 25 11

6 36 13

7 49 15

Now that’s interesting. The gap from 02 to 12 is 1. The gap from 12 to 22 is
3. The gap from 22 to 32 is 5. And so on – the odd numbers are sandwiched
between the squares! What’s going on?

Ah! Growing to the next-sized square means we’ve added a horizontal and
vertical strip (x +x) and a corner piece (1). If we currently have a square with
side x, the jump to the next square is 2x +1. (If we have a 5×5 square, getting
to a 6×6 will be a jump of 2(5)+1 = 11. And yep, 36−25 = 11.)

Again, the visualization was nice, but it took effort. Algebra can simplify the
process.

In this setup, if we set our change to d x = 1, we get

d f = f (x +1)− f (x)

= (x +1)2 −x2

= (x2 +2x +1)−x2

= 2x +1

Algebra predicts the size of the slices without a hitch.
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8.3 Integrals and the Veggie Mafia

The derivative takes a shape, a direction to cut, and finds a pattern of slices.
Can we work backwards, from the slices to the shape? Let’s see.

Suppose the veggie mafia spies on your topsoil and fencing orders. They
can’t see your garden directly, but what can they deduce from your purchases?

Let’s say they observe a constant amount of fencing being delivered (4, 4, 4,
4. . . ) but increasing orders of topsoil (1, 3, 5, 7, 9, 11. . . ). What can they work
out?

A low-level goon might just add up the total amount accumulated (the
definite integral): “Heya boss, looks like they’ve built some garden with a total
perimeter of 40-feet, and total area of 100 square feet.”

But that’s not good enough! The goon doesn’t know the shape you’re trying
to build. He saw order after order go by without noticing the deeper pattern.

The crime boss is different: he wants the indefinite integral, the pattern
you are following. He’s savvy enough to track the pattern as the orders come
in: “The area is increasing 1, 3, 5, 7. . . that’s following a 2x +1 area increase
pattern!”

Now, there are likely many shapes that could grow their area by 2x +1. But,
combined with a constant perimeter increase of 4, he suspects you’re making a
square garden after a few deliveries.

How does the godfather do it? Again, by working backwards. He’s split
apart enough shapes (triangles, squares, rectangles, etc.) that he has a large
table of before-and-afters, just like the antiques dealer.

When he sees a change of 2x+1, a square (x2) is a strong candidate. Another
option might be a right triangle with sides x and 2x. Its area equation is
1
2 x ·2x = x2, so the area would change the same as a square.

And when he sees a perimeter change of a steady 4, he knows the perimeter
must be 4x. Ah! There aren’t too many shapes with both properties: a square
is his guess. (With enough practice, you start to recognize common patterns;
tools like Wolfram Alpha can help.)

Now suppose your orders change: your fencing deliveries drop to (2, 2, 2,
2. . . ) and your topsoil orders change to (20, 20, 20, 20). What’s going on?
Make a guess if you like.

Ready?
The veggie boss figures you’ve moved to a rectangular garden, with one side

determined by x, and the other side a fixed 20 feet, for a 20-by-x rectangle.
Does this guess work? Assuming this is the pattern, let’s measure the

perimeter, area, and how they change:

Perimeter = 20+20+x +x = 40+2x
d

d x
Perimeter = 2

Area = 20x
d

d x
Area = 20
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Wow, it checks out: the changes in perimeter and area match the patterns
(2, 2, 2. . . ) and (20, 20, 20. . . ). No wonder he’s the godfather.

Lastly, what if the godfather saw topsoil orders of (5, 7, 9, 11, 13)? He
might assume you’re still building a square (2x+1 pattern), but you started with
a 2×2 garden. Your first area jump was by 5, which would have happened if x
was already 2 (solve 2x +1 = 5 and we see x = 2).

The mob boss is a master antiques dealer: he sees the pattern in the pieces
you’re bringing and quickly determines the original shape (indefinite integral).
The henchman can only tell you the running totals so far (definite integral).

8.4 Wrapping It All Up

It looks like we’re ready for another rule, to explain how squares change. If we
leave d x as it is, we can write:

d

d x
x2 = f (x +d x)− f (x)

d x

= (x +d x)2 − (x)2

d x

= x2 +2x ·d x + (d x)2 −x2

d x

= 2x ·d x + (d x)2

d x
= 2x +d x

Ok! That’s the abbreviated way of saying “Grow by two sides and the corner”.
Let’s plug this into the computer to check:

Uh oh! We hand-computed the derivative of x2 as 2x +d x (which is usually
2x +1), but the computer says it’s just 2x.

But isn’t the difference from 42 to 52 exactly 25−16 = 9, and not 8? What
happened to that corner piece? The mystery continues.
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9
WORKING WITH INFINITY

Last time, we manually worked on the derivative of x2 as 2x +1. But the official
derivative, according to the calculator, was 2x. What gives?

The answer relies on the concept of infinite accuracy. Infinity is a fascinating
and scary concept – there are entire classes (Analysis) that study it. We’ll avoid
the theoretical nuances: our goal is a practical understanding of how infinity
helps us with Calculus.

9.1 Insight: Sometimes Infinity Can Be Measured

Here’s a quick brainteaser for you. Two friends are 10 miles apart, moving
towards each other at 5mph each. A mosquito files quickly between them,
touching one person, then the other, on and on, until the friends high-five and
the mosquito is squished.

Let’s say the mosquito travels a zippy 20mph as it goes. Can you figure out
how far it flew before its demise?

Yikes. This one is tricky: once the mosquito leaves the first person, touches
the second, and turns around. . . the first person has moved closer! We have an
infinite number of ever-diminishing distances to add up. The question seems
painfully difficult to solve, right?

Well, how about this reasoning: from the perspective of the people walking,
they’re going to walk for an hour total. After all, they start 10 miles apart, and
the gap shrinks at 10 miles per hour (5mph + 5mph). Therefore, the mosquito
must be flying for an hour, and go 20 miles.

Whoa! Did we just find the outcome of a process with an infinite number of
steps? I think so!

40
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9.2 Splitting A Whole Into Infinite Parts

It’s time to turn our step-by-step thinking into overdrive. Can we think about a
finite shape being split into infinite parts?

• In the beginning of the course, we saw a circle could be split into rings.
How many? Well, an infinite number!

• A number line can be split into an infinite number of neighboring points.
How many decimals would you say there are between 1.0 and 2.0?

• The path of a mosquito can be seen as a whole, or a journey subdivided
into an infinite number of segments.

When we have two viewpoints (the mosquito, and the walkers), we can pick
the one that’s easier to work with. In this case, the walker’s holistic viewpoint is
simpler. With the circle, it’s easier to think about the rings themselves. It’s nice
to have both options available.

Here’s another example: can you divide a cake into 3 equal portions, by only
cutting into quarters?

It’s a weird question. . . but possible! Cut the entire cake into quarters. Share
3 pieces and leave 1. Cut the remaining piece into quarters. Share 3 pieces,
leave 1. Keep repeating this process: at every step, everyone has received an
equal share, and the remaining cake will be split evenly as well. Wouldn’t this
plan maintain an even split among 3 people?

We’re seeing the intuition behind infinite X-Ray and Time-lapse vision:
zooming in to turn a whole into an infinite sequence. At first, we might think
dividing something into infinite parts requires each part to be nothing. But,
that’s not right: the number line can be subdivided infinitely, yet there’s a finite
gap between 1.0 and 2.0.

http://en.wikipedia.org/wiki/1/4_%2B_1/16_%2B_1/64_%2B_1/256_%2B_%E2%8B%AF
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9.3 Two Fingers Pointing At The Same Moon

Why can we understand variations of the letter A, even when pixelated?

Even though the rendering is different, we see the idea being pointed to.
All three versions, from perfectly smooth to jagged, create the same letter A in
our heads (or, are you unable to read words when written out with rectangular
pixels?). An infinite sequence can point to the same result we’d find if we took
it all at once.

In calculus, there are detailed rules about how to find what result an infinite
set of steps points to. And, there are certain sequences that cannot be worked
out. But, for this primer, we’ll deal with functions that behave nicely.

We’re used to jumping between finite representations of the same idea (5
= V = IIIII). Now we’re seeing we can convert between a finite and infinite
representation of an idea, similar to 1

3 = .333. . . = .3 + .03 + .003 + . . ..
When we turned a circle into a ring-triangle, we said “The infinitely-many

rings in our circle can be turned into the infinitely-many boards that make up a
triangle. And the resulting triangle is easy to measure.”

Today’s goal isn’t to become an expert on infinity. It’s to intuitively appreciate
a few practical conclusions:

• Infinitely many parts can combined to a finite result, if they decrease fast
enough
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• A process with limited (but improving) precision can point to the same
result as one with infinite precision

In Calculus terms, this means the conclusions drawn from our finite (but
growing) sequence of steps can be trusted1.

1Calculus is a powerful but not flawless tool. Jumpy, artificial patterns trip it up and can’t be
analyzed. Luckily, most naturally-occurring patterns can be.
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10
THE THEORY OF DERIVATIVES

The last lesson showed that an infinite sequence of steps could have a finite
conclusion. Let’s put it into practice, and see how breaking change into infinitely
small parts can point to the the true amount.

10.1 Analogy: Measuring Heart Rates

Imagine you’re a doctor trying to measure a patient’s heart rate while exercising.
You put a guy on a treadmill, strap on the electrodes, and get him running. The
machine spits out 180 beats per minute. That must be his heart rate, right?

Nope. That’s his heart rate when observed by doctors and covered in electrodes.
Wouldn’t that scenario be stressful? And what if your Nixon-era electrodes get
tangled on themselves, and tug on his legs while running?

Ah. We need the electrodes to get some measurement. But, right afterwards,
we need to remove the effect of the electrodes themselves. For example, if we
measure 180 bpm, and knew the electrodes added 5 bpm of stress, we’d know
the true heart rate was 175.

The key is making the knowingly-flawed measurement, getting a reading,
then correcting it as if the instrument was never there.

10.2 Measuring the Derivative

Measuring the derivative is just like putting electrodes on a function and making
it run. For f (x) = x2, we stick an electrode of +1 onto it, to see how it reacted:

44
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The horizontal stripe is the result of our change applied along the top of the
shape. The vertical stripe is our change moving along the side. And what’s the
corner?

It’s part of the horizontal change interacting with the vertical one! This
is an electrode getting tangled in its own wires, a measurement artifact that
needs to go.

10.3 Throwing Away Artificial Results

The founders of calculus intuitively recognized which components of change
were “artificial” and just threw them away. They saw that the corner piece
was the result of our test measurement interacting with itself, and shouldn’t be
included.

In modern times, we created official theories about how this is done:

• Limits: We let the measurement artifacts get smaller and smaller until
they effectively disappear (cannot be distinguished from zero).

• Infinitesimals: Create a new type of number that lets us try infinitely-small
change on a separate, tiny number system. When we bring the result back
to our regular number system, the artificial elements are removed.

The are entire classes that explore these theories. The practical upshot is
realizing how to take a measurement and then throwing away the parts we
don’t need.

Here’s how the derivative is defined using limits:

Step Example

Start with function to study f (x) = x2

1. Increase the input by d x, a sample change f (x +d x) = (x +d x)2 = x2 +2x ·d x + (d x)2

2. Find the resulting increase in output, d f d f = f (x +d x)− f (x) = 2x ·d x + (d x)2

3. Find the ratio of output change to input change d f
d x = 2x·d x+(d x)2

d x = 2x +d x

4. Throw away any measurement artifacts 2x +d x
d x = 0=⇒ 2x

Wow! We found the official derivative for d
d x x2 on our own:
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Now, a few questions:

• Why do we measure d f
d x , and not the actual change d f ? Think of d f as

the entire change that happened as we took a step. For easy comparison
to other functions, we typically want the “per step” change d f

d x . (This
is like comparing jobs by dollars/hour instead of by salary, or cars by
miles-per-gallon instead of gallons used.) Sometimes the total change is
helpful to consider, and we can rewrite d f

d x = 2x as d f = 2x ·d x.

• How can we just set d x to zero at the end? I see d x as the size of the
instrument used to measure the change in a function. After we have the
measurement with a real instrument ( d f

d x = 2x +d x), we figure out what
the measurement would be if the instrument were perfect and did not
interfere ( d f

d x = 2x +0 = 2x).

• But isn’t the 2x + 1 pattern correct? The whole numbers (integers)
are separated by an interval of 1, so assuming d x = 1 (and not letting it
disappear) is accurate: 2x+1 correctly predicts the gap of 5 between 22 and
32. However, decimals (real numbers) don’t have a fixed interval between
neighbors. 2x is the ideal estimate for the rate of change between 22 and
the infinitely-close number that follows – not 2.0001, or 2.0000000001,
but whatever unnamed number comes next. Said another way, if d x
doesn’t disappear, we’re saying the real numbers have a fixed interval
between them, like the integers.

• If there’s no ‘+1’, when is the corner filled in? Think about the change
in area, and not the specifics of the diagram. The corner overestimates
how much growth happens on this step (i.e., the radar clocked us at 2x +1
but we’re only growing by 2x). But we’re still moving and make progress.

I imagine a square that grows by bulging out its sides (x + x = 2x), then
absorbing the new area to make a larger square. The new size is larger,
but not quite big enough to fill in the corner exactly. It’s ok, because
this process will still encompass the necessary area over time. 2x + 1
overestimates our growth because it assumes the horizontal and vertical
slices interact to create the corner piece.

Practical conclusion: We can start with a knowingly-flawed measurement,
f ′(x) ∼ 2x +d x, and deduce the perfect result it points to: f ′(x) = 2x. The
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theories of exactly how we throw away d x aren’t necessary to master today. The
key is realizing there are measurement artifacts – the shadow of the camera in
the photo – that must be removed to accurately describe the true behavior.

(Still shaky about exactly how d x can appear and disappear? You’re in good
company. This question took top mathematicians decades to resolve. Here’s a
deeper discussion of how the theory works.)

http://betterexplained.com/articles/an-intuitive-introduction-to-limits/
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11
THE FUNDAMENTAL THEOREM OF CALCULUS

(FTOC)

The Fundamental Theorem of Calculus is the big aha! moment, and something
you might have noticed all along:

• X-Ray and Time-Lapse vision let us see an existing pattern as an accumu-
lated sequence of changes

• The two viewpoints are opposites: X-Rays break things apart, Time-Lapses
put them together

This might seem “obvious”, but it’s only because we’ve explored several
examples. Is it truly obvious that we can separate a circle into rings to find the
area? The Fundamental Theorem of Calculus gently reminds us we have a few
ways to look at a pattern. (“Might I suggest the ring-by-ring viewpoint? Makes
things easier to measure, I think.”)

11.1 Part 1: Shortcuts For Definite Integrals

If derivatives and integrals are opposites, we can sidestep the laborious accumu-
lation process found in definite integrals.

For example, what is 1 + 3 + 5 + 7 + 9? The hard way, computing the
definite integral directly, is to add up the items directly. (What about 50 items?
500?)

The easy way is to realize this pattern of numbers comes from a growing
square. We know the last change (+9) happens at x = 4, so we’ve built up to a
5×5 square. Therefore, the sum of the entire sequence is 25:

48
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Neat! If we have the original pattern, we have a shortcut to measure the
size of the steps.

How about a partial sequence like 5 + 7 + 9? Well, just take the total
accumulation and subtract the part we’re missing (in this case, the missing 1 +
3 represents a missing 2×2 square).

And yep, the sum of the partial sequence is: 5×5 - 2×2 = 25 - 4 = 21.
I hope the strategy clicks for you: avoid manually computing the definite

integral by finding the original pattern.
Here’s the first part of the FTOC in fancy language. If we have pattern of

steps and the original pattern, the shortcut for the definite integral is:∫ b

a
steps(x)d x =Original(b)−Original(a)

Intuitively, I read this as “Adding up all the changes from a to b is the same
as getting the difference between a and b”. Formally, you’ll see f (x) = steps(x)
and F (x) =Original(x), which I think is confusing. Label the steps as steps, and
the original as the original.

Why is this cool? The definite integral is a gritty mechanical computation,
and the indefinite integral is a nice, clean formula. Just take the difference
between the endpoints to know the net result of what happened in the middle!
(That makes sense, right?)

11.2 Part 2: Finding The Indefinite Integral

Ok. Part 1 said that if we have the original function, we can skip the manual
computation of the steps. But how do we find the original?

FTOC Part Deux to the rescue!
Let’s pretend there’s some original function (currently unknown) that tracks

the accumulation:

Accumulation(x) =
∫ b

a
steps(x)d x

The FTOC says the derivative of that magic function will be the steps we
have:

Accumulation′(x) = steps(x)
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Now we can work backwards. If we can find some random function, take its
derivative, notice that it matches the steps we have, we can use that function as
our original!

Skip the painful process of thinking about what function could make the
steps we have. Just take a bunch of them, break them, and see which matches
up. It’s our vase analogy, remember? The FTOC gives us “official permission” to
work backwards. In my head, I think “The next step in the total accumulation is
our current amount! That’s why the derivative of the accumulation matches the
steps we have.”

Technically, a function whose derivative is equal to the current steps is called
an anti-derivative (One anti-derivative of 2 is 2x; another is 2x +10). The FTOC
tells us any anti-derivative will be the original pattern (+C of course).

This is surprising – it’s like saying everyone who behaves like Steve Jobs is
Steve Jobs. But in Calculus, if a function splits into pieces that match the pieces
we have, it was their source.

The practical conclusion is integration and differentiation are opposites.
Have a pattern of steps? Integrate to get the original. Have the original?
Differentiate to get the pattern of steps. Jump back and forth as many times as
you like.

11.3 Next Steps

Phew! These lessons were theory-heavy, to give an intuitive foundation for
topics in an Official Calculus Class. The key insights are:

• Infinity: A finite result can be viewed with a sequence of infinite steps.

• Derivatives: We can take a knowingly-flawed measurement and find the
ideal result it refers to.

• Fundamental Theorem Of Calculus: The original function lets us skip
adding up a gajillion small pieces.

In the upcoming lessons, we’ll work through a few famous calculus rules
and applications. The real goal will be to figure out, for ourselves, how to make
this happen:
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By now, we have an idea that the strategy above is possible. By the last
chapter, you’ll be able to walk through the exact calculations on your own.
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12
THE BASIC ARITHMETIC OF CALCULUS

Remember learning arithmetic? After seeing how to multiply small numbers,
we learned how to multiply numbers with several digits:

13×15 = (10+3)(10+5) = 100+30+50+15

We can’t just combine the first digits (10×10) and the second (3×5) and call
it done. We have to walk through the cross-multiplication.

Calculus is similar. If we have the whole function, we can blithely say that
f (x) has derivative f ′(x). But that isn’t illuminating, or explaining what happens
behind the scenes.

If we can describe our function in terms of a building block x (such as
f (x) = 3x2 + x), then we should be able to find the derivative, the pattern of
changes, in terms of that same building block. If we have two types of building
blocks ( f = a ·b), we’ll get the derivative in terms of those two building blocks.

Here’s the general strategy:

• Imagine a scenario with a few building blocks (ar ea = leng th ·wi d th)

• Let every component change

• Measure the change in the overall system

• Remove the measurement artifacts (our instruments interfering with each
other)

Once we know how systems break apart, we can reverse-engineer them into
the integral (yay for the FTOC!).

12.1 Addition

Let’s start off easy: how does a system with two added components behave?
In the real world, this could be sending two friends (Frank and George) to

build a fence. Let’s say Frank gets the wood, and George gets the paint. What’s
the total cost?

Total= Frank’s cost+George’s cost

52
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t (x) = f (x)+ g (x)

The derivative of the entire system, d t
d x , is the cost per additional foot.

Intuitively, we suspect the total increase is the sum of the increases in the parts:

d t

d x
= d f

d x
+ d g

d x

That relationship makes sense, right? Let’s say Frank’s cost is $3/foot for
the wood, and George adds $0.50/foot for the paint. If we ask for another foot,
the total cost will increase by $3.50.

Here’s the math for that result:

• Original: f + g

• New: ( f +d f )+ (g +d g )

• Change: ( f +d f )+ (g +d g )− ( f + g ) = d f +d g

In my head, I imagine x, the amount you requested, changing silently in a
corner. This creates a visible change in f (size d f ) and g (size d g), and we see
the total change as d f +d g .

It seems we should just combine the total up front, writing tot al = 3.5x not
tot al = f (x)+g (x) = 3x+0.5x. Normally, we would simplify an equation, but it’s
sometimes helpful to list every contribution (total = base + shipping + tax). In
our case, we see Frank contributes the most to the price.

Remembering the derivative is the “per d x” rate, we write:

d

d x

(
f (x)+ g (x)

)= d f

d x
+ d g

d x

But ugh, look at all that notation! Let’s trim it down:

• Write f instead of f (x). We’ll assume a single letter is an entire function,
and by the Third Edict of The Grand Math Poombahs, our functions will
use a parameter x.

• We’ll express the derivative using a single quote ( f ′), not with a ratio ( d f
d x ).

We’re most interested in the relationship between the parts (addition),
not the gritty details of the parts themselves.

So now the addition rule becomes:

( f + g )′ = f ′+ g ′

Much better! Here’s how I read it: Take a system made of several parts:
( f + g ). The change in the overall system, ( f + g )′, can be found by adding the
change from each part.
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12.2 Multiplication

Let’s try a tricker scenario. Instead of inputs that are added (almost oblivious to
each other), what if they are multiplied?

Suppose Frank and George are making a rectangular garden for you. Frank
handles the width and George takes care of the height. Whenever you clap, they
move. . . but by different amounts!

Frank’s steps are 3-feet long, but George’s are only 2-feet long (zookeeping
accident, don’t ask). How can we describe the system?

Area=width ·height= f (x) · g (x)

f (x) = 3x

g (x) = 2x

We have linear parts, so the derivatives are simple: f ′(x) = 3 and g ′(x) = 2.
What happens on the next clap?
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Looks familiar! We have a horizontal strip, a vertical strip, and a corner
piece. We can work out the amounts with algebra:

• Original: f · g

• New: ( f +d f ) · (g +d g ) = ( f · g )+ ( f ·d g )+ (g ·d f )+ (d f ·d g )

• Change: f ·d g + g ·d f +d f ·d g

Let’s see this change more closely:

• The horizontal strip happened when f changed (by d f ), and g was the
same value

• The vertical strip was made when g changed (by d g), and f was the same
value

• The corner piece (d f ·d g) happened when the change in one component
(d f ) interacted with the change in the other (d g)

The corner piece is our sample measurement getting tangled on itself, and
should be removed. (If we’re forced to move in whole units, then the corner
is fine. But most real-world systems can change continuously, by any decimal
number, and we want the measurement artifacts removed.)

To find the total change, we drop the d f ·d g term (interference between the
changes) and get:

f ·d g + g ·d f

I won’t let you forget the derivative is on a “per dx” basis, so we write:

total change
d x

= f
d g

d x
+ g

d f

d x

( f · g )′ = f · g ′+ g · f ′

There is an implicit “x” changing off in the distance, which makes f and g
move. We hide these details to make the notation simpler.

In English: Take a scenario with multiplied parts. As they change, and
continue to be multiplied, add up the new horizontal and vertical strips that are
formed.

Let’s try out the rule: if we have a 12×8 garden and increment by a whole
step, what change will we see?

In this case, we’ll use the discrete version of the rule since we’re forced to
move as a whole step:

• Vertical strip: f ·d g = 12 ·2 = 24

• Horizontal strip g ·d f = 8 ·3 = 24

• Corner piece: d f ·d g = 3 ·2 = 6

• Total change: 24+24+6 = 54

Let’s test it. We go from 12×8 (96 square feet) to 15×10 (150 square feet).
And yep, the area increase was 150 - 96 = 54 square feet!
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12.3 Simple Division (Inverses)

Inverses can be tough to visualize: as x gets bigger, 1
x gets smaller. Let’s take it

slow.
Suppose you’re sharing a cake with Frank. You’ve just cut it in half, about to

take a bite and. . . George shuffles in. He looks upset, and you’re not about to
mention the fresh set of claw marks.

But you’ve just cut the cake in half, what can you do?
Cut it again. You and Frank can cut your existing portion in thirds, and give

George a piece:

Neat! Now everyone has 1/3 of the total. You gave up 1/3 of your amount
(1/2), that is, you each gave George 1/6 of the total.

Time to eat! But just as you’re about to bite in. . . the veggie godfather walks
in. Oh, he’ll definitely want a piece. What do you do?

Cut it again. Everyone smooshes together their portion, cuts it in fourths,
and hands one piece to the Don. The cake is split evenly again.

This is step-by-step thinking applied to division:

• Your original share is 1
x (when x=2, you have 1/2)

• Someone walks in

• Your new share becomes 1
x+1

How did your amount of cake change? Well, you took your original slice
( 1

x ), cut it into the new number of pieces ( 1
x+1 ), and gave one away (the change

is negative):

1

x
· −1

x +1
= −1

x(x +1)

We can probably guess that the +1 is a measurement artifact because we
forced an integer change in x. If we call the test change dx, we can find the
difference between the new amount ( 1

x+1 ) and the original ( 1
x ):

1

x +d x
− 1

x
= x

x(x +d x)
− x +d x

x(x +d x)
= −d x

x(x +d x)

After finding the total change (and its annoying algebra), we divide by dx to
get the change on a “per dx” basis:

−1

x(x +d x)

Now we remove the leftover dx, the measurement artifact:
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−1

x(x +0)
=− 1

x2

Phew! We’ve found how an 1/x split changes as more people are added.
Let’s try it out: You are splitting a $1000 bill among 5 people. A sixth person

enters, how much money do you save?
You’ll personally save 1/5 · 1/6 = 1/30 of the total cost (cut your share into

6 pieces, give the new guy one portion to pay). That’s about 3%, or 30. Not bad
for a quick calculation!

Let’s work it backwards: how large is our group when we’re saving about
$100 per person? Well, $100 is 1/10 of the total. Since 1

32 ∼ 1
10 , we’ll hit that

savings rate around x=3 people.
And yep, going from 3 to 4 people means each person’s share goes from

$333.33 to $250 – about $100. Not bad! (If we added people fractionally, we
could hit the number exactly.)

12.4 Questions

We didn’t explicitly talk about scaling by a constant, such as finding the deriva-
tive of f (x) = 3x. Can you use the product rule to figure out how it changes?
(Hint: imagine a rectangle with a fixed 3 for one side, and x for the other).

Now, how about the addition rule? How would f (x) = x +x +x behave?
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13
FINDING PATTERNS IN THE RULES

We’ve uncovered the first few rules of calculus:

( f + g )′ = f ′+ g ′

( f · g )′ = f · g ′+ g · f ′(
1

x

)′
= − 1

x2

Instead of blasting through more rules, step back. Is there a pattern here?

13.1 Combining Perspectives

Imagine a business with interacting departments, or a machine with intercon-
nected parts. What happens when we make a change? There’s a potential
impact on each part.

If our business has 4 departments, and we make a policy change, there are 4
perspectives to consider. It sounds simple when written out: whenever a change
happens, see what happens to each part!

No matter the specific interaction between parts F and G (addition, subtrac-
tion, multiplication, exponents. . . ), we just have two perspectives to consider:
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Aha! That’s why the rules for ( f + g )′ and ( f · g )′ are two added perspectives.
The derivative of 1

X has a perspective because there’s just one “moving part”, x.
(If you like, there is a contribution from “1” about the change it experiences:
nothing. No matter how much you yell, 1 stays 1.)

The exact contribution from a perspective depends on the interaction:

• With addition, each part adds a direct change (d f +d g).

• With multiplication, each part thinks it’ll add a rectangular strip ( f ·d g +
g ·d f ). (I’m using d f instead of f ′ to help us think about the slice being
added.)

You might forget the exact form of the multiplication rule. But you can think
“The derivative of f · g must be something with d f + something with d g .”

Let’s go further: what about the derivative of a ·b + c? You guessed it, 3
perspectives that should be added: something involving d a plus something
involving db plus something involving dc.

We can predict the shape of derivatives for gnarly equations. What’s the
derivative of:

x y · u

v

Wow. I can’t rattle that off, but I can say it’ll be something involving 4
additions (d x, d y, du and d v). Guess the shape of a derivative, even if you
don’t know the exact description.

Why does this work? Well, suppose we had a change that was influenced by
both d a and db, such as 15 ·d a ·db – that’d be our instrument interfering with
itself!

Only direct changes on a single variable’s are counted (such as 3d a or 12db),
and “changes on changes’’ like 15 ·d a ·db are ignored.

13.2 Dimensional Intuition

Remember that derivatives are a fancier form of division. What happens when
we do a division like x3

x ? We divide volume by length, and get area (one
dimension down).

What happens when we do d
d x x3? You might not know yet, but you can bet

we’ll be dropping a dimension.
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Dimensions Example Description

3 x3 Volume (cubic growth)

2 x2 Area (square growth)

1 x Length (linear growth)

0 c Constant (no change)

-1
1

x
Inverse length (“per length”)

-2
1

x2 Inverse area (“per area”)

-3
1

x3 Inverse volume (“per volume”)

When we divide or take a derivative, we drop a dimension and hop down
the table. Volume is built from area (slices d x thick), area is built from length
(d x wide).

A constant value, like 3, has no dimension in the following sense: it never
produces a set of slices. There will never be a jump to the next value. Once
we have a constant value, we get “stuck” on the table because the 0 pattern
always produces another 0 pattern (volume to area to lines to constant to zero
to zero. . . ).

We can have negative dimensions as well: “per length”, “per area”, “per
volume”, etc. Derivatives still decrease the dimension, so when seeing 1

x , we
know the derivative will resemble 1

x2 as the dimension drops a level.
An important caveat: Calculus only cares about quantities, not their dimen-

sion. The equations will happily combine x and x2, even though we know
you can’t mix length with area. Units add a level of meaning from outside the
equation, that help keep things organized and warn us if we’ve gone awry (if
you differentiate area and get volume, you know something went wrong).

13.3 Thinking With Dimensions

You can think about the dimension of a derivative without digging into a specific
formula. Imagine the following scenario:

• Take a string and wrap it tight around a quarter. Take another string and
wrap it tight around the Earth.

• Lengthen both strings, adding more to the end, so there’s a 1-inch gap
all the way around the quarter, and a 1-inch gap all the way around the
Earth (like having a ring floating around Saturn).

• Quiz: Which scenario needed more extra string to create? Is it more string
to put a 1-inch gap around the quarter, or a 1-inch gap around the Earth?
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We can crunch through the formula, but think higher-level. Because circum-
ference is a 1-d line, its reaction to change (the derivative) will be a constant.
No matter the current size, the circumference will change the same amount
with every push. So, the extra string needed is the same for both! (About 6.28
inches per inch of radius increase).

Now, suppose we were painting the sphere instead of putting a string around
it. Ah, well, area is squared, therefore the derivative is a dimension lower
(linear). If we have a 5-inch and 10-inch sphere, and make them 1-inch bigger
each, the larger sphere will require double the extra paint.

13.4 Questions

Let’s think about the derivative of x3, a growing cube.
1) What dimension should the derivative of x3 have?
2) How many viewpoints should x3 = x · x · x involve?
3) Have a guess for the derivative? Does it match with how you’d imagine a

cube to grow?
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14
THE FANCY ARITHMETIC OF CALCULUS

Here’s the rules we have so far:

( f + g )′ = f ′+ g ′

( f · g )′ = f · g ′+ g · f ′(
1

x

)′
= − 1

x2

Let’s add a few more to our collection.

14.1 Power Rule

We’ve worked out that d
d x x2 = 2x:

We can visualize the change, and ignore the artificial corner piece. Now,
how about visualizing x3?

62



CHAPTER 14. THE FANCY ARITHMETIC OF CALCULUS 63

The process is similar. We can glue a plate to each side to expand the cube.
The “missing gutters” represent artifacts, where our new plates would interact
with each other.

I have to keep reminding myself: the gutters aren’t real! They represent
growth that doesn’t happen at this step. After our growth, we “melt” the cube
into its new, total area, and grow again. Counting the gutters would over-
estimate the growth that happened in this step. (Now, if we’re forced to take
integer-sized steps, then the gutters are needed – but with infinitely-divisible
decimals, we can change smoothly.)

From the diagram, we might guess:

d

d x
x3 = 3x2

And that’s right! But we had to visualize the result. Abstractions like
algebra let us handle scenarios we can’t visualize, like a 10-dimensional shape.
Geometric shapes are a nice, visual starting point, but we need to move beyond
them.

We might begin analyzing a cube with using algebra like this:

(x +d x)3 = (x +d x)(x +d x)(x +d x) = (x2 +2x ·d x + (d x)2)(x +d x) = ...

Yikes. The number of terms is getting scary, fast. What if we wanted the
10th power? Sure, there are algebra shortcuts, but let’s think about the problem
holistically.

Our cube x3 = x · x · x has 3 components: the sides. Call them a, b and c to
keep ‘em straight. Intuitively, we know the total change has a contribution from
each side:
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What change does each side think it’s contributing?

• a thinks: My change (d a) is combined with the other, unmoving, sides
(b · c) to get d a ·b · c

• b thinks: My change (db) is combined with the other sides to get db ·a ·c
• c thinks: My change (dc) is combined with the other sides to get dc ·a ·b

Each change happens separately, and there’s no “crosstalk” between d a, db
and dc (such crosstalk leads to gutters, which we want to ignore). The total
change is:

A′s chang es +B ′s chang es +C ′s chang es = (d a ·b · c)+ (db ·a · c)+ (dc ·a ·b)

Let’s write this in terms of x, the original side. Every side is identical,
(a = b = c = x) and the changes are the same (d a = db = dc = d x), so we get:

(d x · x · x)+ (d x · x · x)+ (d x · x · x) = x2 ·d x +x2 ·d x +x2 ·d x = 3x2 ·d x

Converting this to a “per dx” rate we have:

d

d x
x3 = 3x2

Neat! Now, the brain-dead memorization strategy is to think “Pull down the
exponent and decrease it by one”. That isn’t learning!

Think like this:

• x3 has 3 identical perspectives.

• When the system changes, all 3 perspectives contribute identically. There-
fore, the derivative will be 3 · somethi ng .

• The “something” is the change in one side (d x) multiplied by the remain-
ing sides (x · x). The changing side goes from x to d x and the exponent
lowers by one.

We can reason through the rule! For example, what’s the derivative of x5?
Well, it’s 5 identical perspectives (5 · somethi ng). Each perspective is me

changing (d x) and the 4 other guys staying the same (x · x · x · x = x4). So the
combined perspective is just 5x4.

The general Power Rule:

d

d x
xn = nxn−1

Now we can memorize the shortcut “bring down the exponent and subtract”,
just like we know that putting a 0 after a number multiplies by 10. Shortcuts
are fine once you know why they work!
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14.2 Integrals of Powers

Let’s try integrating a power, reverse engineering a set of changes into the
original pattern.

Imagine a construction site. Day 1, they order three 1×1 wooden planks.
The next day, they order three 2×2 wooden planks. Then three 3×3 planks.
Then three 4×4 planks. What are they building?

My guess is a cube. They are building a shell, layer by layer, and perhaps
putting grout between the gutters to glue them together.

Similarly, if we see a series of changes like 3x2, we can visualize the plates
being assembled to build a cube: ∫

3x2 = x3

Ok – we took the previous result and worked backward. But what about the
integral of plain old x2? Well, just imagine that incoming change is being split 3
ways:

x2 = x2

3
+ x2

3
+ x2

3
= 1

3
3x2

Ah! Now we have 3 plates (each 1/3 of the original size) and we can
integrate a smaller cube. Imagine the “incoming material” being split into 3
piles to build up the sides:∫

x2 =
∫

1

3
·3x2 = 1

3

∫
3x2 = 1

3
x3

If we have 3 piles of size x2, we can make a full-sized cube. Otherwise, we
build a mini-cube, 1/3 as large.

The general integration rule is:∫
xn = 1

n +1
xn+1

After some practice, you’ll do the division automatically. But now you know
why it’s needed: we have to split the incoming “change material” among several
sides. (Building a square? Share changes among 2 sides. Building a cube?
Share among 3 sides. Building a 4d hypercube? Call me.)

14.3 The Quotient Rule

We’ve seen the derivative of an inverse (a “simple division”):

d

d x

1

x
=− 1

x2

Remember the cake metaphor? We cut our existing portion ( 1
x ) into x slices,

and give one away.
Now, how can we find the derivative of f

g ? One component in the system is
trying to grow us, while the other divides us up. Which wins?
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Abstraction to the rescue. When finding the derivative of x3, we imagined it
as x3 = a ·b · c, which helped simplify the interactions. Instead of a mishmash of
x’s being multiplied, it was just 3 distinct perspectives to consider.

Similarly, we can rewrite f
g as two perspectives:

f

g
= a ·b

We know a = f and b = 1
g . From this zoomed-out view, it looks like a normal,

rectangular, product-rule scenario:

(a ·b)′ = d a ·b +db ·a

It’s our little secret that b is really 1
g , which behaves like a division. We just

want to think about the big picture of how the rectangle changes.
Now, since a is just a rename of f , we can swap in d a = d f . But how do we

swap out b? Well, we have:

b = 1

g

db

d g
=− 1

g 2

db =− 1

g 2 d g

Ah! This is our cake cutting. As g grows, we lose db =− 1
g 2 ḋ g from the b

side. The total impact is:

(a ·b)′ = (d a ·b)+ (db ·a) =
(
d f · 1

g

)
+

(−1

g 2 d g · f

)
This formula started with the product rule, and we plugged in their real

values. Might as well put f and g back into (a ·b)′, to get the Quotient Rule
(aka the Division Rule): (

f

g

)′
=

(
d f · 1

g

)
+

(−1

g 2 d g · f

)
Many textbooks re-arrange this relationship, like so:(

d f · 1

g

)
+

(−1

g 2 d g · f

)
= g ·d f

g 2 − f ·d g

g 2 = g ·d f − f ·d g

g 2

And I don’t like it, no ma’am, not one bit! This version no longer resembles
its ancestor, the product rule.

In practice, the Quotient Rule is a torture device designed to test your
memorization skills; I rarely remember it. Just think of f

g as f · 1
g , and use the

product rule like we’ve done.
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14.4 Questions

Let’s do a few warm-ups to test our skills. Can you solve these bad boys?

d

d x
x4 = ?

d

d x
3x5 = ?

(You can check your answers with Wolfram Alpha, such as d/dx x^ˆ4.)
Again, don’t get lost in the symbols. Think “I have x4 – what pattern of

changes will I see as I make x larger?”.
Ok! How about working backwards, and doing some integrals?∫

2x2 = ?

∫
x3 = ?

Ask yourself, “What original pattern would create steps in the pattern 2x2?”
Trial-and-error is ok! Try a formula, test it, and adjust it. Personally, I like to

move aside the 2 and just worry about the integral of x2:∫
2x2 = 2

∫
x2 = ?

How do you know if you’re right? Take the derivative – you are the antiques
dealer! I brought you a pattern of shards (2x2) and you need to tell me the
vase they came from. Once you have guessed a vase, break a replica in the back
room and make sure you get 2x2 back out. Then you’ll be confident in your
answer (and your manager will be thrilled!).

We’re getting ready to work through the circle equations ourselves, and
recreate results found by Archimedes, likely the greatest mathematician of all
time.

http://www.wolframalpha.com/input/?i=d%2Fdx+x%5E4
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15
DISCOVERING ARCHIMEDES’ FORMULAS

In the preceding lessons we uncovered a few calculus relationships, the “arith-
metic” of how systems change:

How do these rules help us?

• If we have an existing equation, the rules are a shortcut to finding the
step-by-step pattern. Instead of visualizing a growing square, or cube, the
Power Rule lets us crank through the derivatives of x2 and x3. Whether
x2 refers to a literal square or just the multiplication x ·x isn’t important –
we’ll get the pattern of changes.

• If we have a set of changes, the rules help us reverse-engineer the original
pattern. Getting changes like 2x or 14x is a hint that something · x2 was
the original pattern.

Learning to think with Calculus means we can use X-Ray and Time-lapse
vision to imagine changes taking place, and use the rules to work out the
specifics. Eventually, we might not visualize anything, and just work with the
symbols directly (as you likely do with arithmetic today).

In the start of the course, we morphed a ring into a circle, then a sphere,
then a shell:
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With the official rules in hand, we can blast through the calculations and
find the circle/sphere formulas on our own. It may sound strange, but the
formulas feel different to me – almost alive – when you see them morphing in
front of you. Let’s jump in.

15.1 Changing Circumference To Area

Our first example of “step-by-step” thinking was gluing a sequence of rings to
make a circle:

When we started, we needed a lot of visualization. We had to unroll the
rings, line them up, realize they made a triangle, then use 1

2 base ·height to get
the area. Visual, tedious. . . and necessary. We need to feel what’s happening
before working with raw equations.

Here’s the symbolic approach:
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Let’s walk through it. The notion of a “ring-by-ring timelapse” sharpens into
“integrate the rings, from nothing to the full radius” and ultimately:

Area=
∫ r

0
2πr dr

Each ring has height 2πr and width dr , and we want to accumulate that
area to make our disc.

How can we solve this equation? By working backwards. We can move the
2π part outside the integral (remember the scaling property?) and focus on the
integral of r :

2π
∫ r

0
r dr =?

What pattern makes steps of size r ? Well, we know that r 2 creates steps of
size 2r , which is twice what we need. Half that should be perfect. Let’s try it
out:

d

dr

1

2
r 2 = 1

2

d

dr
r 2 = 1

2
2r = r

Yep, 1
2 r 2 gives us the steps we need! Now we can plug in the solution to the

integral:

Area= 2π
∫ r

0
r dr = 2π

1

2
r 2 =πr 2

This is the same result as making the ring-triangle in the first lesson, but we
manipulated equations, not diagrams. Not bad! It’ll help even more once we
get to 3d. . .

15.2 Changing Area To Volume

Let’s get fancier. We can take our discs, thicken them into plates, and build a
sphere:
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Let’s walk slowly. We have several plates, each at a different “x-coordinate”.
What’s the size of a single plate?

The plate has a thickness (d x), and its own radius. The radius of the plate is
its height from the x-axis, which we can call y .

It’s a little confusing at first: r is the radius of the entire sphere, but y is the
(usually smaller) radius of an individual plate under examination. In fact, only
the center plate (x = 0) will have its radius the same as the entire sphere. The
“end plates” don’t have a height at all.

And by the Pythagorean theorem, we have a connection between the x-
position of the plate, and its height (y):

x2 + y2 = r 2

Ok. We have size of each plate, and can integrate to find the volume, right?
Not so fast. Instead of starting on the left side, with a negative x-coordinate,

moving to 0, and then up to the max, let’s just think about a sphere as two
halves:

To find the total volume, get the volume of one half, and double it. This is a
common trick: if a shape is symmetrical, get the size of one part and scale it
up. Often, it’s easier to work out “0 to max” than “min to max”, especially when
“min” is negative.

Ok. Now let’s solve it:

http://betterexplained.com/articles/measure-any-distance-with-the-pythagorean-theorem/
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Whoa! Quite an equation, there. It seems like a lot, but we’ll work through
it:

Volume= 2
∫ r

0
πy2 d x

First off, three variables (r , y, x) is too many to have flying around in a
single equation. We’ll write the height of each plate (y), in terms of the others:

height= y =
√

r 2 −x2

The square root looks intimidating at first, but it’s being plugged into y2 and
the exponent will cancel it out. After plugging in y and moving π outside the
integral, we have the much nicer:

Volume= 2
∫ r

0
π

(√
r 2 −x2

)2
d x

Volume= 2π
∫ r

0
r 2 −x2 d x

The parentheses are often dropped because it’s understood that d x is mul-
tiplied by the entire size of the step. We know the step is (r 2 − x2)d x and not
r 2 − (x2d x).

Let’s talk about r and x for a minute. r is the radius of the entire sphere,
such as “15 inches”. You can imagine asking “I want the volume of a sphere
with a radius of 15 inches”. Fine.

To figure this out, we’ll create plates at each x-coordinate, from x = 0 up to
x = 15 (and double it). x is the bookkeeping entry that remembers which plate
we’re on. We could work out the volume from x = 0 to x = 7.5, let’s say, and
we’d build a partial sphere (maybe useful, maybe not). But we want the whole
shebang, so we let x go from 0 to the full r .

Time to solve this bad boy. What equation has steps like r 2 −x2?
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First, let’s use the addition rule: steps like a −b are made from two patterns
(one making a, the other making b).

Let’s look at the first pattern, the steps of size r 2. We’re moving along the
x-axis, and r is a number that never changes: it’s 15 inches, the size of our
sphere. This max radius never depends on x, the position of the current plate.

When a scaling factor doesn’t change during the integral (r , π, etc.), it can
be moved outside and scaled up at the end. So we get:∫

r 2 d x = r 2
∫

d x = r 2x

In other words, r 2 · x is a linear trajectory that contributes a constant r 2 at
each step.

Cool. How about the integral of −x2? First, we can move out the negative
sign and take the integral of x2:

−
∫

x2 d x =?

We’ve seen this before. Since x3 has steps of 3x2, taking 1/3 of that amount
( x3

3 ) should be just right. And we can check that our integral is correct:

d

d x

(
−1

3
x3

)
=−1

3

d

d x
x3 =−1

3
3x2 =−x2

It works out! Over time, you’ll learn to trust the integrals you reverse-
engineer, but when starting out, it’s good to check the derivative. With the
integrals solved, we plug them in:

2π
∫

r 2 −x2 d x = 2π(r 2x − 1

3
x3)

What’s left? Well, our formula still has x inside, which measures the volume
from 0 to some final value of x. In this case, we want the full radius, so we set
x = r :

2π(r 2x − 1

3
x3) −−−−−→

set x=r
2π

(
(r 2)r − 1

3
r 3

)
= 2π

(
r 3 − 1

3
r 3

)
= 2π

2

3
r 3 = 4

3
πr 3

Tada! You’ve found the volume of a sphere (or another portion of a sphere,
if you use a different range for x).

Think that was hard work? You have no idea. That one-line computation
took Archimedes, one of the greatest geniuses of all time, tremendous effort to
figure out. He had to imagine some spheres, and a cylinder, and some cones,
and a fulcrum, and imagine them balancing and. . . let’s just say when he found
the formula, he had it written on his grave. Your current intuition would have
saved him incredible effort (see this video).

http://en.wikipedia.org/wiki/On_the_Sphere_and_Cylinder
http://www.youtube.com/watch?v=-HchPhg4x10
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15.3 Changing Volume To Surface Area

Now that we have volume, finding surface area is much easier. We can take a
thin “peel” of the sphere with a shell-by-shell X-Ray:

I imagine the entire shell as “powder” on the surface of the existing sphere.
How much powder is there? It’s dV , the change in volume. Ok, what is the area
the powder covers?

Hrm. Think of a similar question: how much area will a bag of mulch cover?
Get the volume, divide by the desired thickness, and you have the area covered.
If I give you 300 cubic inches of dirt, and spread it in a pile 2 inches thick, the
pile will cover 150 square inches. After all, if Area ·Thickness = Volume then
Area= V olume

T hi ckness .
In our case, dV is the volume of the shell, and dr is its thickness. We can

spread dV along the thickness we’re considering (dr ) and see how much area
we added: dV

dr , the derivative.
This is where the right notation comes in handy. We can think of the

derivative as an abstract, instantaneous rate of change (V ′), or as a specific
ratio ( dV

dr ). In this case, we want to consider the individual elements, and how
they interact (volume of shell / thickness of shell).

So, given the relation,

Area of shell= Volume of shell
Depth of shell

= dV

dr

we figure out:

d

dr
Volume= d

dr

4

3
πr 3 = 4

3
π

d

dr
r 3 = 4

3
π(3r 2) = 4πr 2

Wow, that was fast! The order of our morph (Circumference → Area →
Volume → Surface area) made the last step simple. We could try to spin a
circumference into surface area directly, but it’s more complex.

As we cranked through this formula, we “dropped the exponent” on r 3 to
get 3r 2. Remember the total change comes from 3 perspectives that contribute
an equal share: d

dr r 3 = r 2 + r 2 + r 2 = 3r 2.

http://math.stackexchange.com/questions/335577/how-to-find-surface-area-of-a-sphere
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15.4 2000 Years Of Math In A Day

The steps we worked through took 2000 years of thought to discover, by the
greatest geniuses no less. Calculus is such a broad and breathtaking viewpoint
that it’s difficult to imagine where it doesn’t apply. It’s just about using X-Ray
and Time-Lapse vision:

• Break things down. In your current situation, what’s the next thing that
will happen? And after that? Is there a pattern here? (Getting bigger,
smaller, staying the same.) Is that knowledge useful to you?

• Find the source. You’re seeing a bunch of changes – what caused them?
If you know the source, can you predict the end-result of all the changes?
Is that prediction helpful?

We’re used to analyzing equations, but I hope it doesn’t stop there. Numbers
can describe mood, spiciness, and customer satisfaction; step-by-step thinking
can describe battle plans and psychological treatment. Equations and geometry
are just nice starting points to analyze. Math isn’t about equations, and music
isn’t about sheet music – they point to the idea inside the notation.

While there are more details for other derivatives, integration techniques,
and how infinity works, you don’t need them to start thinking with Calculus.
What you discovered today would have brought a tear to Archimedes’ eye, and
that’s a good enough start for me.

Happy math.
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In martial arts, a black belt doesn’t indicate mastery. It means you’re a
competent-enough beginner who can now start learning.

By now, we have a solid intuition for Calculus: it explores patterns with
X-Ray and Time-Lapse viewpoints, shows tradeoffs in how objects are made,
and gives us improved multiplication and division. (These insights are more
than I had after years of classes.)

From here, the path is up to you. An intuitive appreciation is wonderful, and
if you wish to sharpen your understanding, follow the guide in the appendix.

If a curious friend asks What is Calculus all about? and you look forward to
answering, I’ve done my job.

Happy math.

Keep In Touch

If you’d like clear, simple insights and Calculus and other math topics, join the
newsletter:

http://betterexplained.com/newsletter
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APPENDIX: LEARNING CHECKLIST

Check your Calculus intuition and skills using the questions below.

Intuitive Appreciation (Chapters 1-3)

Describe, in your own words:

• What Calculus does

• X-Ray Vision

• Time-lapse Vision

• The tradeoffs when splitting a circle into rings, wedges, or boards

• How to build a 3d shape from 2d parts

Technical Description (Chapters 4-5)

Describe, in your own words:

• Integral

• Derivative

• Integrand (a single step)

• Bounds of integration

Skills:

• Describe a Calculus action (splitting a circle into rings) using the official
language

• Enter the official language into Wolfram Alpha to solve the problem

Theory I (Chapters 6-8)

Describe, in your own words:

• How integrals/derivatives relate to multiplication/division

Skills:

• Find the derivative/integral of a line

• Find the derivative/integral of a constant

• Find the derivative/integral of a square

• Recognize the common notations for the derivative

• Estimate the change in f (x) = x2 using a step of size d x
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Theory II (Chapters 9-14)

Describe, in your own words:

• How an infinite process can have a finite result

• How a process with limited precision can point to a perfect result

• The formal definition of the derivative

• Estimate the change in f (x) = x2 using a step of size d x, and let d x go to
zero. Verify the limit using Wolfram Alpha.

• The Fundamental Theorem of Calculus (FTOC)

Derive and put into your own words:

• The addition rule: ( f + g )′ =?

• The product rule: ( f ∗ g )′ =?

• The inverse rule: ( 1
x )′ =?

• The power rule: (xn)′ =?

• The quotient rule: ( f
g )′ =?

• Solve d
d x 3x5 on your own and verify with Wolfram Alpha

• Solve
∫

2x2 on your own and verify with Wolfram Alpha

Performance (Chapter 15)

Describe how to turn the circumference of a circle into the area of a circle:

• Explain your plan in plain English

• Explain your plan using the official math notation

• Apply the rules of Calculus to your equation and calculate the result

• Verify the result using Wolfram Alpha

• Repeat the steps above, turning the area of a circle into the volume of a
sphere

• Repeat the steps above, turning the volume of a sphere into the surface
area of a sphere



APPENDIX: CALCULUS STUDY PLAN

Week 1

Read Calculus, Better Explained:

• Day 1 - Intuitive Appreciation (Chapters 1-3)

• Day 2 - Technical Description (Chapters 4-5)

• Day 3 - Theory I (Chapters 6-8)

• Day 4 - Theory II (Chapters 9-14)

• Day 5 - Performance (Chapter 15)

You don’t need to memorize every result; follow the learning checklist and
use online tools to help answer questions if you get stuck.

Weeks 2-12

Begin a traditional Calculus course1, such as:

• Elementary Calculus: An Infinitesimal Approach by Jerome Keisler (2002).
This book is based on infinitesimals (an alternative to limits, which I like)
and has plenty of practice problems. Available in print or free online.

• Calculus Made Easy by Silvanus Thompson (1914). This book follows
the traditional limit approach, and is written in a down-to-earth style.
Available on Project Gutenberg and print.

• MIT 1801: Single Variable Calculus. Includes video lectures, assignments,
exams, and solutions. Available free online.

As you go through the traditional course, keep this in mind:

• Review the intuitive definition. Rephrase technical definitions in terms
that make sense to you.

• It’s completely fine to use online tools for help. When stuck, get a hint,
fix your mistakes, and try solving a new problem on your own.

• Relate graphs back to shapes. Most courses emphasize graphs and
slopes; convert the concepts to shapes to help visualize them.

• Skip limits if you get stuck. Limits (and infinitesimals) were invented
after the majority of Calculus. If you struggle, move on and return later.

Enjoy.

1Visit http://betterexplained.com/calculus/book for clickable URLs.
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http://www.math.wisc.edu/~keisler/calc.html
http://www.gutenberg.org/files/33283/33283-pdf.pdf
http://ocw.mit.edu/courses/mathematics/18-01sc-single-variable-calculus-fall-2010/
http://betterexplained.com/calculus/book
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